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A theo ry  o f  l ight  sca t te r ing  f r o m  a s imple  A ~ -  B reac t ing  fluid in which  
mo lecu la r  an i so t ropy  ha s  been  neglected is p resen ted .  The  theo ry  is a 
molecular -s ta t i s t ica l  one  based  on  M or i ' s  l inear  r e sponse  fo rma l i sm.  T h e  
t ime -dependen t  cor re la t ion  func t i ons  a re  assoc ia ted  with t r a n s p o r t  co- 
efficients a n d  the  zero t i me  cor re la t ion  func t i ons  a re  assoc ia ted  wi th  
t h e r m o d y n a m i c  derivat ives .  T h e  effects o f  the  reac t ion  are  obse rved  f r o m  
bo th  dens i ty  a n d  concen t r a t i on  f luc tua t ions  as well as f r o m  cross  correla-  
t ions  be tween  dens i ty  a n d  concen t r a t i on  f luc tua t ions .  
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1. INTRODUCTION 

The three-line Rayleigh-Brillouin spectrum of light scattered off fluids was 
first analyzed by Landau and Placzek ~1) and more recently by Mountain~2); 

S u p p o r t e d  in pa r t  by the  N a t i o n a l  Science F o u n d a t i o n ,  G r a n t s  G P  32078X1 a n d  G P  
30753X1. U C L A  C o n t r i b u t i o n  No .  3398. 

i D e p a r t m e n t  o f  Chemis t ry ,  Un ive r s i ty  o f  Cal i fornia ,  Los  Angeles ,  Cal i fornia .  
2 School  o f  Molecu la r  Science, Un ive r s i t y  o f  Sussex,  Br igh ton ,  Eng land .  
a D e p a r t m e n t  o f  Chemica l  Engineer ing ,  Imper i a l  College,  L o n d o n ,  Eng land .  

167  

�9 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher. 



168 Paul Madden and Daniel Kivelson 

the spectrum arises from scattering off density fluctuations whose behavior 
can be described in terms of thermodynamic fluctuations governed by hydro- 
dynamic equations of motion. Among their other successes, these theories 
account for the Brillouin lines, spectral lines which are symmetrically dis- 
placed from the laser frequency by the sound frequency, whose linewidths 
vary as k 2, where k = (4,r/A) sin(0/2), A is the incident wavelength, and 0 is the 
scattering angle. On a molecular level these theories correspond to the 
coupled time evolution of density, momentum density, and energy density 
fluctuations~8,4~; these treatments are valid for atomic liquids provided ob- 
servations are restricted to relatively small deviations from the laser fre- 
quency or, alternatively, to times which are very long compared to the times 
characteristic of individual molecular motions. In multicomponent liquids 
and in liquids composed of molecules a three-variable hydrodynamic theory 
is not adequate, even at long times, because of the dependence of density 
fluctuations upon fluctuations in concentration, internal excitations, molecu- 
lar rotations, and chemical reactions. The observed spectrum is thus more 
complex than would be predicted from Landau and Placzek's basic theory. 

The three hydrodynamic variables are conserved quantities and so exhibit 
very slow local fluctuations in volume elements with dimensions comparable 
to A for visible light. In a two-component system, in the absence of chemical 
reactions, the concentration is also a conserved quantity, and it also exhibits 
slow local fluctuations. Hydrodynamic equations for two-component systems 
have been developed ~5-1~ and the spectra of such systems have been de- 
scribed in terms of two Brillouin (Raman) lines and two superimposed 
Rayleigh lines with widths which vary as k2. ~5) The concentration fluctuations 
are determined by the rate of interdiffusion of the species, and the theory 
relates these fluctuations to the diffusion constant. 

For molecular liquids the choice of additional variables to describe 
rotations, vibrations, and reactions is less obvious because these effects cannot 
be described by additional slowly varying conserved quantities. Nevertheless, 
these modes often relax on hydrodynamic, or nearly hydrodynamic, time 
scales, which means that additional slowly varying, but nonconserved, quan- 
tities must be included in the theory. Appropriate variables can be introduced 
to describe these additional modes. Wigner rotation matrices can be used to 
describe rotations~11'12~; the vibrations can be described by means of the 
internal energy ~18-~5~ or by a progress variable~16); and chemical reactions 
have also been discussed in terms of progress variables3 ~7-~9~ Alternatively, 
one can describe the effects of these "internal modes" characteristic of 
molecular fluids in terms of hydrodynamic variables alone provided fre- 
quency-dependent transport coefficients are introduced~2~ the vibrational 
effects have been treated in this way by Mountain3 TM Here we shall, however, 
make use of the formalism in which each additional mode is associated with 
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an appropriate dynamical variable. Each additional mode, characterized by a 
single relaxation time, introduces an additional Rayleigh line into the spec- 
trum provided that the mode is coupled to the density fluctuations. Thus if 
vibrations all relax with a single time, a vibrational Rayleigh line with k- 
independent width is observed(22~; similar results are observed for rota- 
tions. (ya~ For a single first-order reaction in a two-component system, the 
reaction is not a new mode in addition to the diffusion discussed above, but 
provides an alternate dissipative route for concentration fluctuations; whereas 
the diffusive contributions are hydrodynamic and k dependent, the reaction 
contribution to the Rayleigh line associated with concentration fluctuations is 
k independent. Both diffusion (24~ and reaction (25,26~ effects in the Rayleigh 
spectrum have been reported. One should, of course, note that the individual 
Rayleigh lines can be associated with specific relaxations only in certain 
limiting cases. 

We consider a model of a fluid which consists of various "species"; 
these species might be distinguished by differences in polarizability, chemical 
structure, optical activity, (27~ molecular orientation, or vibrational energy. 
Light is scattered off polarizability fluctuations in the fluid, or equivalently, 
fluctuations in the local dielectric tensor; these fluctuations could depend 
upon the fluctuations in the concentrations of the various "species." This 
dependence could arise either because the molecular polarizability is different 
for the different species or because the decay of the density fluctuations depends 
indirectly upon the local concentrations of the various "species"; we shall call 
these primary and secondary effects, respectivelyY ~ For the sake of simplicity 
we shall restrict our considerations to systems composed of two "species" 
only. These two species might be two chemical species, or they might be the 
ground and an excited vibrational state. In the following sections we develop, 
by means of the Mori theory, (29~ hydrodynamic equations for the three con- 
served quantities and the concentration variable, and we express the various 
transport coefficients in terms of molecular quantities. We seek solutions 
to these equations for the light scattering spectrum and we discuss various 
features of the spectrum. 

Before proceeding we wish to comment on the relation between our 
calculations and similar ones performed by others. In many ways ours are 
most similar in method to those of Trimble and Deutch, (9~ who considered the 
problem of two nonreacting species. Our calculations are also similar to 
those of Weinberg and Oppenheim, (la~ who considered internal relaxation; 
they did not have to take account of the possibility that the molecule in the 
ground and excited internal states could have different polarizabilities; in 
considering chemical reactions this difference in polarizabilities is important 
and we have included this effect. Whereas Weinberg and Oppenheim intro- 
duce the internal energy as the fourth quantity to be added to the basic set of 
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three conserved variables, we have introduced a concentration variable; this 
latter variable is a more natural choice, as we shall see, for discussing chemical 
reactions. Finally, because of our different way of handling expansions, we 
obtain rather different results for the limiting case of  rapid chemical reactions 
or vibrational relaxation, i.e., for relaxation frequencies comparable to those 
of  sound waves. Mountain <21~ has considered the same problem as Weinberg 
and Oppenheim from a hydrodynamic viewpoint in which the vibrational 
relaxation is introduced by means of a frequency-dependent coefficient of  
viscosity; our results agree with those of Mountain, ~ even in the rapid relaxa- 
tion limit, but our approach is molecular, we have introduced the vibrational 
or chemical relaxation in a different manner, and we have considered species 
with different polarizabilities. Sutherland and Deutch<l~ have considered two 
relaxing species with different polarizabilities by a hydrodynamic technique 
similar to that of  Mountain. Many aspects of  the problem we have con- 
sidered have also been treated by means of  hydrodynamic approaches by 
Salzberg et al., but we have studied a simple reaction in rather more detail. 
The Mori approach in terms of a concentration variable has already been 
applied (a~ to reacting species but a full treatment in terms of all conserved 
variables has not been presented. 

In an appendix we develop a technique of Mori 's  to relate microscopic 
parameters of  the theory to thermodynamic quantities. 

2. D Y N A M I C A L  V A R I A B L E S  

Light scattering spectra probe fluctuations in the local dielectric tensor 
of  a fluid. The dominant  features of  the spectrum are contained in a small 
frequency range AoJ about the incident laser frequency, i.e., (Ao~)%-~o 1 << 1, 
where ~mol is a characteristic molecular time which is perhaps of  the order of  
10-18 sec. The wavelength of the light used guarantees that the wave number 
k defined in the last section conforms to the condition k2a~oa << 1, where 
amol is a characteristic molecular distance which is perhaps of  the order of  a 
few angstroms; of  course, for neutron diffraction this condition would not be 
valid and the theory developed below would not be applicable. Here we shall 
be interested in a scattering theory for which k and oJ are very small and times 
are long, i.e., we shall be interested in hydrodynamic (and not molecular) 
distances, frequencies, and times. 

4 Mountain has shown that slight differences occur in the light scattering formulas 
obtained by incorporating the effects of an internal degree of freedom by means of a 
fourth variable or mode and by means of a frequency-dependent viscosity; these 
differences arise because of the presence of 8~[~T terms in the thermodynamic theory, 
where ~ is the dielectric constant. We neglect these very small differences. 
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The light scattering spectrum I(~o), which reflects fluctuations in the 
local dielectric tensor of a fluid, is (28),5 

fo l(oJ) ~ 2 Re (&(k, t )&(-k ,  0))e ~~ dt (1) 

where &(k, t) is the Fourier transform of the polarizability density tensor 
a(R, t), where R is a space point. We can write &(k, t) as 

a(k, t) = ~ aj(t) exp[ik.qj(t)] (2) 
J 

as(t ) is the polarizability tensor of t he j th  molecule and qj is its translational 
coordinate, the brackets ( )  indicate an equilibrium ensemble average, the 
sum is over all molecules, and the bracketed quantity is an autocorrelation 
function. For molecules with isotropic polarizabilities, we assume that 
aj(t) is a constant independent of time and independent of molecular posi- 
tion, velocity, and energy; actually intermolecular interactions give rise to 
both time and temperature dependences but the temperature dependence is 
probably small (cf. footnote 4 concerning small values of Be~ST); the time 
dependence arising from intermolecular pair "collisions" is probably charac- 
terized by frequencies much higher than those studied here. The VV or 
polarized spectrum of a fluid composed of two species (A and B) with iso- 
tropic molecular polarizabilities a (A) and a (B), respectively, is thus 

I(oJ) oc Re[a2(N(k, oJ )N(-k ,  0)) 
+ (AN(k, ~o)N(k, 0))} + 

+ a Aa(N(k, co) AN(k, 0) 
Aa2(AN(k,  oJ) ~XN(-k, 0))] 

where 

(3 )  

(. 
<N(k, o~)N(-k)> = J e '~t dt <N(k, t ) N ( - k ,  0)> (4) 

= ,[~(A) + ~(B)] (5)  
A ~  = +[~<A) - ~{B)] (6)  

N(k, t) is the transform of the fluctuation 8n(R, t) in the total number density, 

8n(R, t) = 8n(A)(R, t) + 8n(B)(R, t) (7) 

AN(k, t) is the transform of the fluctuation in the concentration density, 

AN(k, t) = [N(A)(k, t) - N{B)(k, t)] (8) 

N{A)(k, t) is the Fourier transform of 8n(A)(R, t), the number density fluctua- 
tion of  the Ath species, 

8n(A)(R, t) = n(A)(R, t) -- (n(A)(R)) (9) 

I(o~) is also proportional to the local electric field intensity and we neglect the fluctua- 
tions in this intensity. 
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and n(A)(R, t) is the instantaneous number density of species A at point R in 
the sample. The number density n(A)(R, t) is given by 

n(A)(R, t) = ~ 3(R - qj(t)) A/A)(t) (10) 
J 

where A/A> is 1 i f j  is an A-type molecule and 0 if it is a B-type molecule; a 
completely analogous expression holds for n(B)(R, t). If  we combine Eqs. (9) 
and (10), we see that 

N(A)(k, t) = f n(A)(R, t) [exp(ik.R)] dR - 
N(A) 

(2~) 3 ~(k) V (11) 

where dR indicates a spatial volume element, N (^) is the total number of  
particles of species A, and V is the volume of the sample. Throughout this 
work we will exclude the case of k - 0; consequently, we can henceforth 
neglect the term containing 3(k) in Eq. (11). It can also be seen that because 
3n('~)(R, t) is a fluctuation variable, 

<N(k, oJ)) = <AN(k, oJ)) = 0 (12) 

Since we exclude the case k = 0, we allow N (A), N (B), N, and AN to represent 
total numbers whereas N(A)(k), N(B)(k), N(k), and AN(k) represent Fourier 
transforms of density fluctuations. 

Equation (3) is the fundamental expression which we wish to evaluate. 
In order to do this, we must calculate the correlation functions in Eq. (3), 
which involve N(k) and AN(k), the Fourier transforms of the number density 
and the concentration fluctuation, respectively. Consequently, N(k) and 
AN(k) are the two fundamental or primary variables, (28) the variables that 
enter directly into the expression for I(oJ). In addition, we must also consider 
other variables, which we call secondary variables. (28) The secondary variables 
are needed to describe the time dependence of the primary variables. Since 
the primary variables are slowly varying quantities, i.e., conserved quantities 
in the absence of chemical reactions, we must include all other "slow vari- 
ables" which can in some way affect the long-time evolution of the primary 
variables. The two conserved quantities - i k . M U ( k )  and E(k), the Fourier 
transforms of the divergence of the momentum density and of the energy 
density fluctuation, respectively, are the other relevant slow variables (8'4'29) 

- i k . M U ( k )  = - i k .  ~ py exp(ik.qj) (13) 
J 

E ( k ) =  ~.  [(pj2/2m)+�89 ~j Ujs,+ ej] exp(ik.~.) (14) 

M is the mass of the sample; pj is the momentum and ej the internal energy, 
respectively, of the j t h  particle; Ujj, is the intermolecular pair potential; 
k # 0; and (P3", ~ ,  ej) are all time dependent. We will assume that the four 
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variables {N(k), AN(k), - i k . M U ( k ) ,  E(k)) constitute a "complete set" of 
slowly varying quantities in the Hilbert subspace described by MoriY ~) 
E(k) represents fluctuations in the energy but we allow E to represent the 
total energy; U(k) represents fluctuations in the flow speed. 

The quantities A~. A) and ej require further comment. We consider the 
complete description of  the system in a phase space which consists of 
the positions (q,.) and translational momenta (pj) of the center of masses of  
the particles, and of their relevant internal positions (~j) and momenta (r~j). The 
internal energy ej is a function of gj and nj, and the intermolecular potential 
energy Uis not only a function ofqjj,, where r = qJ - qJ,, but also ofgj and 
gj.. We shall assume that (j is a " reac t ion"  coordinate and that for ~; ~< s 
t h e j t h  molecule is of species A, i.e., A~ A) = 1, A~ -s) = 0, ~j = cA; similarly, if 
~j /> s then the j t h  molecule is of species B, i.e., A~ B) = 1, A~. A) = 0, 
ej = eB. This is a two-site jump model; its application to chemical reactions is 
obvious, but it can also be used to study rotational and vibrational re- 
laxation. 

We are interested in obtaining equations of motion for the quantities 
N(k), AN(k), E(k), - i k .  MU(k). In order to obtain these equations, we must 
evaluate the various relevant time derivates. In particular, 

N(k, t) = ik .MU(k,  t)/m (15) 

where we have chosen both species with the same molecular mass m. Further- 
more, for short-range intermolecular interactions, in the limit of small k, 

- ik .MU(k,  t) = k2ak~ (16) 

where a~B is the microscopic stress tensor defined as 

d 
a~B(k, t) = ~ ~ [p~j(t)qBj(t)] exp[ik-~(t)]  (17) 

3 

The subscripts a and fl indicate laboratory axes, and crkk indicates a~ if k is 
along z. Slightly more complicated is the derivative of  AN(k): 

A2~r(k, t) = (d/at) ~. [A~A)(sej(t)) -- A~.S)(~:j(t))] 

• exp[ik.qi(t)] (18) 

In the limit of small k, this quantity can be rewritten, provided the molecular 
interactions are short range, as 

where 

A~(k,  t) = ik.~A")(k, t) + 7(k, t) (19) 

y(k, t) = ~ ~j(t)23(~:i(t ) - ~o) exp[ik.o~(t)] (20) 
J 

a~A")(k, t) = ~.  c)j[A~.A)(~j(t)) -- A~B)(~:y(t))] exp[ik.qj(t)] (21) 
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and 8 is a delta function. Whereas N(k) and - i k M . U ( k )  are conserved [i.e., 
~r(k) and U(k)--> 0 as k--~ 0], AN is conserved only if 6j(t) = 0, i.e., if 
y = 0, which is the situation for a nonreacting binary fluid. Finally, since 
E(k) is a conserved quantity, 

/~(k, t) = ik.o(e)(k, t) (22) 

where the energy flux density t7 (e) is, in the low-k limit, 

t )  = + V . ,  + 

1 + + 'V)" 
j ' ~ j  

1 a Ujj,'~ exp(ik.qj) (23) 

This expression is derived in Appendix A. The presence of ej in a (e) is a con- 
sequence of  the internal motions; the last term arises because the potential 
energy of a molecule changes as either it or its neighbors convert from one 
species to the other. 

It can readily be shown (a,=m that all the quantities of interest, in the 
theory to be discussed below, are dependent only upon the magnitude of k; 
we shall therefore introduce a scalar notation in which N(k,  t) replaces 
N(k, t), and similar replacements are made for the other variables2 

3. T H E O R Y :  M O R I  F O R M U L A T I O N  OF T R A N S P O R T  T H E O R Y  

Now we wish to use Mori's theory (29) to obtain the correlation functions 
in Eq. (3). To do so we introduce a vector A in Hilbert space, where the com- 
ponents of  A are the dynamical variables described in the last section: 

A(k, t) = {N(k, t), AN(k,  t), E(k, t), - i k . M U ( k ,  t)} (24) 

In the Mori linear response theory the matrix of the transforms of correlation 
functions <A(oJ)A*> are given by the expression 

(A(~o)A*) = [s - iQ + K(co)]-I(AA *> (25) 

where (A(oJ)A*> is the half-Fourier time transform of the correlation function 
<a(t)A*>, 

i f2 = <AA*><AA*> -1 (26) 

K(to) = <zi + (co)(A +)*><AA*>-I (27) 

6 AN is often called a progress variable and is relabeled ~:. 
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(~J +(o~)(~j +)*) is the half-Fourier time transform of (A +(t)(.4 +)*), 

A+(t) = {exp[ i (1-  P)kt])i(1 - P)LA (28) 

ik  is the ordinary Liouville operator, and the projection operator P acting on 
an arbitrary vector G yields 

PG = ( G A * ) ( A A * ) -  1A (29) 

If  on the long time scale of interest, the four variables {N(k), AN(k),  E(k), 
- i k . M U ( k ) }  form a complete set, then at low frequency oJ, the transport 
matrix K(oJ) is independent of co. We will assume that these four variables do 
indeed form a complete set; this is our fundamental assumption. 

The coupled transport equations in Eq. (25), together with a transport 
matrix K(~o) that is independent of o~, are valid only at small oJ. We take 

(A) = 0 (30) 

i.e., A is a fluctuation of a quantity , ~  from its equilibrium value. Thus A is 
always chosen so that 

A = ~ '  - (,.~r (31) 

This is true of the variables in Eq. (24). 
It is important to explain why we work with transformed quantities such 

as N(k, t) rather than fluctuations such as 3n(R, t). First of all, it is N(k, t) 
and not 8n(R, t) that enters as a primary variable in the expression for the 
spectrum in Eq. (3). Second, in the transport equations given in Eq. (25), the 
vector A in configuration space must include elements at each position, 
e.g., A(R, t), A(R', t), A(R", t), ...; thus Eq. (25) would have to represent an 
infinite set of coupled differential equations or, in continuum notation, a 
finite set of integrodifferential equations. (29) This complication arises because 
terms of the form (A(R, 0)A(R', 0)) with R # R' do not necessarily vanish. 
However, in reciprocal or lattice space, all these problems vanish since terms 
of the form (A(k, 0)A*(k', 0)) vanish, because of translational invariance, (29) 
i.e., 

(A(k, 0)A*(k', 0)) = (A(k, 0)A(k', 0)*)V -1 3(k - k) (32) 

where V is the volume of the sample. 

4. THEORY:  T H E R M O D Y N A M I C  EQUIVALENCE OF T I M E -  
I N D E P E N D E N T  CORRELATION F U N C T I O N S  

Mori (29'32) has developed a procedure for relating the matrix elements of 

the time-independent equilibrium matrices ( A A * )  and (~JA*) to thermo- 
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dynamic quantities, and we discuss a simple variant of his procedure. The 
results of this treatment can be presented as follows. In the linear response 
limit, the distribution function p for a grand canonical ensemble can be 
expressed as 

p = po[1 + ,~r  (33) 

where po represents the equilibrium ensemble in the absence of any external 
disturbances, and p represents the ensemble at local equilibrium in the pres- 
ence of small external perturbations 3B(R) conjugate to the ~r With the 
aid of this distribution function, one can readily show that 

A(k) = [1/(2rr)3kBTV](A(k)A*(k)}.B(k) (34) 

where the bar over A(k) represents the average value of A(k) in the perturbed 
ensemble, ( } indicates an average in the unperturbed ensemble, B(k) is the 
transform of 8B(R), and A(k) is the transform of ,~r Since k r 0, A(k) is 
actually the transform of the fluctuation [,~r - (off}] [See eqs. (10), (11), 
(30), and (31)]. Our variables are 

/ N(k) \ 
/ A N ( k ) /  

A(k) = ~ E(k) ! (35) 

\ - ik. MU(k)/ 
where 

N(k) = N(A)(k)  + N(m(k) (36) 

and the other variables are defined in Eqs. (8), (13), and (14). We note that 

N(k) is a number fluctuation and N is the total number of particles; N(k) and 

N are very different. However, derivatives of N(k) and of N are identical, so 
that we may replace N(k) by N in all derivatives. The same holds for the pairs 

{AN(k), AN} and {E(k), E), where E is the total energy. The transforms of the 
conjugate perturbing forces 3B(R), are, in the low-k limit, 

/ ?r  3{t~(k)/T(k)} \ 
~r a ~TT3{At~(k)/T(k)}| 

B(k) = (2 ) V~ r3{1/T(k)} I 

\ -U-~)/ik / 

where/z and A/~ are chemical potentials defined as 7 

/z = ~A +/zB 

7 _ A/z is often called the chemical affinity and is represented by - A. 

(37) 

(38) 

(39) 
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where/~A and/zB are the chemical potentials (per molecule) of species A and 

B, respectively, and U(k) is the fluctuation in the mean flow speed. A rather 
complete derivation of the above results is given in Appendix B. [See Eq. 
(B-9) for a precise definition of 3 in the low k-limit.] 

If the elements of ~4(k) and B(k) are represented as Aa(k) and Bb(k), 
respectively, then from Eq. (34) we obtain 

a [aAa(k)\ 
(2rr) ~ ) , c , k ) =  (k"TV)-l(A(k)A*(k))'~b (40) 

(2-) 3 \ ~ ] ~ o ( k ) =  (k'TV)[(A(k)A*(k))-l]~b (41) 

where At(k) and Be(k) represent all components of A(k) and B(k), respec- 

tively, except Ab(k) and Bb(k). The volume V is also held constant; this is 
equivalent to working at a fixed k. These results are valid if only terms linear 

in B(k) are retained in A(k); therefore the derivatives are taken in the limit 
of small B(k). In this limit, the system is homogeneous and the only Fourier 
components present are those for which k is small. We thus have the follow- 
ing interpretation of the above results: The brackets ( ) indicate equilibrium 

at unconstrained equilibrium [B(k = 0) = 0]; the quantities A(k-~ 0) are 
thermodynamic or mean fluctuations from equilibrium; and the "forces" 

B(k--~O) are thermodynamic potentials conjugate to the .4(k-~0)'s; the 

fluctuations vanish at equilibrium, i.e., A(k = 0 ) =  (A(k = 0 ) ) =  0 at 
B(k = 0) = 0; but if k # 0 and B(k) # O, we can have an equilibrium con- 

strained by the "forces" B(k), and in this case A(k) # O. The correlation 
functions (A(k)A*(k)) are mean square fluctuations of thermodynamic 
quantities at unconstrained equilibrium. 

. E V A L U A T I O N  O F  < A A )  -1  M A T R I X  

In terms of our variables {N(k), AN(k), E(k), -ik.MU(k)} the <AA*~ 
matrix introduced above becomes 

<A(k)a*(k)> 
[(N(k)N*(k)) (N(k) AN*(k)) 
I(AN(k)N*(k)) (AN(k) AN*(k)> 

= ~(E(k)No(k)) (E(k) AN*(k))o 

(N(k)E*(k)} 
(AN(k)E*(k)} 
(E(k)E*(k)} 

0 

(42) 

There is no coupling between {N(k), AN(k), E(k)} and { - i k .  MU(k)} because 
the connecting matrix elements all involve averages of expressions that are 
linear in the momentum. In the limit k --~ 0, all the matrix elements in Eq. (42) 
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are equilibrium quantities and therefore directly related to thermodynamic 
quantities. By means of thermodynamic fluctuation theory, as outlined in the 
last section, in the low-k limit we can readily evaluate the elements of the 
inverse matrix (A(k)A*(k)) -1. We make use of Eq. (42) and the identifica- 
tions in Eqs. (35), (37), (40), and (41) to obtain 

1 k~olirn(A(k)A*(k))-z= ~BT 

r[ r (O,lr  r (o . lr  I 
2 \ aN ]Ams.v 2 \aANlm.,v "2 \~]u ,~u .v  0 

aT ff'l(0O-~)aN,s,v I(OT } I[OT~ 0 

I 
o o o 

k2M 

(43) 

We have replaced N(k), AN(k), and E(k) by N, AN, and E as explained above. 
V is held constant because we are working at constant k. In all these thermo- 
dynamic derivatives, U = 0, which means that the total and internal energies 
are equivalent. 

We see that (A(k)A*(k)) and (A(k)A*(k)) -1 are both Hermitian. From 
Eq. (43) we can therefore obtain the interrelationships 

2 ( O T )  _ / e A t ~ T \  

(44a) 

(44b) 

(44c) 

6. E V A L U A T I O N  OF THE i~  M A T R I X  

Next we wish to evaluate the matrix i f2 in the Langevin equation derived 
by Mori, i.e., Eqs. (25) and (26). To do this, we note that in the linear response 
region, the expression 

ei(k) = (2#ak~TV)-l(d(k)A*(k)).B(k) (45) 

can be obtained in exactly the same manner by which Eq. (34) was derived. If 
we now combine this expression with Eq. (34), we obtain 

dik) = (A(k)A*(k))(A(k)A*(k))-l'-~(k) (46) 
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and by differentiating and comparing with Eq. (26), we obtain 

_ _  i (47) 

(See the discussion in Section 4.) It can readily be seen that the only non- 
vanishing elements of ~ab are those that connect - i k M U ( k )  with N(k), 
AN(k), and E(k). If  we make use of Eq. (47) together with the identifications 
in Eqs. (35) and (37), we obtain 

lim iQ = 
k ~ O  

o 

i o 

o 

eO 

o o 1 ( ~ )  
k--'M g-0 N.~N,~.v 

o o 1 t~ / ,~  
k--M ~-b-O- / N,~N.E,V 

kM \OUJN.~N,~,V 

kM[ e~J ~ ( - ,~-s - ~ M , - ~ , . ~ . ~ . ~ , ,  o 

(48) 

In the thermodynamic relationships we have replaced limk~o U(k) by U. 
We can next evaluate the various time derivatives appearing in Eq. (48) 

in terms of thermodynamic quantities. From Eqs. (15) and (16), together with 
Eq. (38), we obtain 

f i /= ik(M/m)U (49) 

where M is the sample mass and m the molecular mass, and in the 1ow-k 
limit 

Aa(k) = - i kMg r = k2p V 

where the pressure p is defined as 

(50) 

Vp = cr-k k (51) 

If  we go back to Eq. (26) and compare it with Eq. (48), we see that 

eARle U = (U(k) u(g)*)- y~XN(k) V(k)*) 
= -(U(k)U(k)*}-~(O(k) AN*(k)}* (52a) 

~f~/~ U = (U(k) U(k)*)- yE(k) U*(k)) 
= - (U(k) U(k)*) -'< O(k)E(k)*)* (52b) 
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From Eq. (45) we see that 

( ~(: ) = ((:(k) AN*(k)> 1 
BN,BB,B U ksTV 

1 
(~'~ffE)I~,.I~N.Bt = <O(k)E*(k)) kBTV 

We now combine Eqs. (52a), (53a), and (50): 

iM~A)~ - k B T V 2 ( ~ p )  
T ~---U = (U(k)U*(k)) ~ B,,.,~.%.v 

Similarly, we can combine Eqs. (52b), (53b), and (50): 

i M P ~ S _ - k B T V 2 ( O p )  
k ~U (U(k)U*(k)) ~ %,.,~,,.%.v 

Finally, we substitute Eqs. (54ab), (50), (37), and the relation 

M(U(k)U*(k)> = kBT 

into the expression for f2 in Eq. (48): 

lim i ~  = V 
k o O  

0 0 0 1 ' mV 

0 0 0 m N  ,.~'.v 

0 0 0 mN " ~  ~j~.A~,t~.v 

k2l ~p \ o 

(53a) 

(53b) 

(54a) 

(54b) 

(55) 

(56) 

Note again that all derivatives are taken with U = 0, and that/z and A/z are 
chemical potentials per molecule. 

7. T R A N S P O R T  COEFFICIENTS 

Finally we turn to the evaluation of the transport coefficients K(oJ) in 

Eq. (27). In evaluating the ((t/+).4 +*(t)) matrix, we can see immediately that 
many terms vanish. First of all 

N+(k, t) - 0 (57) 

Second, for isotropic systems, 

(d+(t)(U+)*> = </J+(t)(A+)*> * -- 0 (58) 

for .4 ~ -ikUM; this can be proved by noting that for all times, - i k M U  + 
has even parity in the spatial coordinate and A + has odd parity in either 



Transport Theory of Reacting Two-Component Fluid 181 

spatial or internal (~:) coordinates. Thus all elements of (A +(co).,i +*> vanish 
except 

+ + ,  = <ake(~)(rkk > : kBTV(43~ + ~v) (59) 

<E + (oJ)/~ +*> = k2@(~ e, + (w)a(k e) + *> = k2kB T2 VK (60) 

<A19+(oJ) AsV+*> = k2<ae~a")+(oJ)a(ka~)+*> + <V+(oJ)7+*> : [k2D + R]N(61) 

<A]?+(~)/~+*> = </~+*(~o) A)9+*> * = k2<a(k~)+(w)(kA~)+*> = k2DrV (62) 

where the various coefficients V, Vv, K, D, and Dr are defined by these equa- 
tions and are the coefficients of shear viscosity, bulk viscosity, thermal 
conductivity, appropriate diffusion, and appropriate thermal diffusion, re- 
spectively, and R is the " reac t ion"  decay constant. In the low-w limit, the limit 
in which we are interested, the transport coefficients are all real. We can now 
combine Eqs. (59)-(62) with Eqs. (41) and (44) to obtain the transport 
matrix K = lim,o_.o K(oJ): 

K ~-  

l 0 0 0 0 

N N N (Dk 2 + R ) ~  (Ok 2 + R ) ~  (Dk 2 + R)kBT2 0 

aT 
t aAN I... x t ~ l . , .  . 

~T k'DrV/~T\ k'Drv/,T\N, " ~ - ~ )  +k_~(_5._A..~)N, . k ' V  ,T + 

k V K - -  [ o 

(e~lr~ f~A~IT] D. V {~A~IT~ ] 
x t--~-E-I~,~N x \---7-k-l.,~. + ~ t-TU-I.,~.3 

t DrV(aAt~fT] ] DrV(OA~IT] ] 
+T6-2~ t--'g-~l~N.~l +5-U2~ CV~-I,,M 

o o o (k' lD(? + 4 /  
(63) 

t 

All the derivatives are taken at constant V and at U = 0. 
The equations derived above differ slightly from those obtained for 

systems whose internal dynamics are uncoupled to the hydrodynamic 
modes. (3) First of all, the local energy density and its conjugate potential are 
modified by the presence of  the internal energy of the molecules. Second, the 
matrix of transport coefficients contains a dissipative decay term R which is 
not proportional to k 2. 
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8. T R A N S P O R T  M A T R I X  

One finds that D~. << D, and in order to simplify the results, we shall set 

DT = 0 (64) 

This has no appreciable effect on the results, as has been discussed by 
Mountain and DeutchY ) Additional simplifications occur if we introduce the 
following effective transport quantities: 

D' D N  [OAI~/T] (65) = 

R' R N  [OAI~/T] (66) = 

, OT] (67) ,~ = K V ( - ~  / N,~,~, v 

~' = (~q + ~v)/p (68) 

D' is a mutual diffusion constant, ~' is an intrinsic total viscosity coefficient, 
and (OE/OT)N.AN,v is the heat capacity at constant volume for a nonreacting 
solution. If  we make use of the approximation in Eq. (64) and the definitions 
in Eqs. (65)-(68), the transport matrix - i  f2 + K becomes 

K -- if2 = 

1 
o o o - 

m 

(h 'k  2 + R') (h 'k  2 + R') 2(O'k2 + R') 2V ( Op 

8T 
x ~a~/T/N,~ 

r 2 (OI~]T] k2~c'T z (SAI~/T] kZ # VT (Op) 

z a p  z Op 
- Zk (-~)~,,. E - VkZ(a-~N),,. ~ - Vk (-~),,.~,, k%/ 

(69) 

Again all derivatives are taken at constant volume V and at U = O. The 
transport equations associated with this matrix are equivalent to the appropri- 
ate equations obtained from irreversible thermodynamics. These equations de- 
scribe the fluctuations monitored in a light scattering experiment, fluctuations 
in a given volume element (determined by k) at a fixed position in space (deter- 
mined by the scattering geometry). The connection is proved in Appendix C. 

9. C A L C U L A T I O N  OF L I G H T  S C A T T E R I N G  S P E C T R U M  

The expression presented in Eq. (3) for the light scattering spectrum 
depends upon correlation functions whose time dependence is determined by 
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the coupled transport equations, Eq. (25), with the transport matrix given by 
Eq. (69). We can solve these transport equations by inverting the 4 x 4 
response matrix [icol - i fl + K]. The most convenient way of representing 
the results is to express the spectrum as a sum of four generalized Lorentzian 
lines of the form Lj(~o): 

Re(I3Vj Im(I3r j  
Lj(o~) = Fj 2 + (o~ wj)2 + (70) _ p j2 + ( ~  _ ~ j ) 2  

where Pj is the half-width and ~oj the position of the line, and Re(Ij) and 
Im(Ij) are the intensities of the "normal"  and "dispersive" parts, respec- 
tively. Such Lorentzian solutions for (d(~o)A*) in Eq. (25) can readily be 
obtained; first one obtains the four roots or eigenvalues aj of the secular 
equation 

[a,1 - i Q + K] = 0 ( 7 1 )  

As we shall show below, there are two real and two complex eigenvalues aj 
for this secular equation. We can conveniently express the two real ones as 

?q = Pn (72) 

a2 = Pr (73) 

where the subscripts R and T stand for reactive and thermal modes, respec- 
tively. The complex solutions can be expressed as 

a ~: = Ps + ick (74) 

where the subscript s stands for sound modes and c, as we shall see, represents 
the sound speed. We can then write I(o~) in Eq. (3) as 

I(~o) - PRIR rrlT Ps(Re Is) + (oJ - ck)(Im Is) 
Pn 2 + oa 2 + Pr  2 + oa 2 + P s +  (~o - ck) 2 

+ Ps(Re Is) + (~o + ck)(Imls) 
P,  + (o~ + ck) 2 (75) 

where the intensity factors Ij are specified by 

( k B T ) - I I ,  = 2fa2dO,Nm[ON'~ Aa2O(~N~m [aAN~ 

F N~N,[__]ON qb<au.mCaAN~ ]'~ + + 
L \aA~,],.~.~ s \ as, ]~,.~.q) 

x {(-A s + As,)(-A s + As,)(-A s + aj,,,)} -~ (76) 

with.] # j '  r j"  # i f ,  the qb~b) are 

~}~b, = ~ {ajl - - i f2  + K},~,(O~--~] (77) 
a" \ U~O ]BeBe,,B e -  
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where {Ajl - i f2 + K},~, is the aa' cofactor of the matrix [As1 - i f2 + K], 
and where c' # c" # c" # b. Equation (75) represents the decomposition of 
the spectrum into four Lorentzians. 

It follows from the material above that q~(n ~'~ and q~(r ~'~ are real but 
q~ '~  is complex. 

10. E I G E N V A L U E S  hj OF T R A N S P O R T  E Q U A T I O N S  

In order to express the spectrum I(co), we make use of Eq. (75) together 
with the relations in Eqs. (76)-(77). To do this, we need the eigenvalues Aj of 
the transport matrix K - i f2, i.e., we must solve the secular equation (71). 
This secular equation can be expanded 

where 

with 

h 4 + b3h 3 +b2h  ~ + b l h + b o  = 0  (78) 

@ 
Vo2= ( ~ ) N , s , ~ u  (80a) 

@ 
v ~  = (Up)u,s,~,~ (80b) 

p is the mass density, the transport coefficients D', R' ,  K', and 7' are defined in 
Eqs. (66)-(69), and the thermal conductivity K" is 

" ,~v - -  (81) K = (3E N,V,a, IT 

The velocities v0, v~, vT, and v~o~ are all thermodynamic quantities whose 
significance is discussed below; they are rather complicated quantities when 
obtained directly from Eq. (69), and the details of the manipulations required 
in obtaining them in the form of Eqs. (80a)-(80d), as well as those required to 
obtain Eq. (81), are given in Appendix D. 

ba = k2[K ' + '7' + D'] + R' (79a) 

b2 = k2vo 2 + (R' + D'k2)[K ' + ~']k 2 + K'v'k ~ (79b) 

b~ = k2v~2(R ' + D ' k  2) + k4vr2K ' + (R'  + O'k2)K"k4~ ' (79c) 

bo = (R' + D'k2)v~rk4K " (79d) 
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Before looking in detail at the solutions to Eq. (78), it is interesting to 
study the imaginary part of the complex solutions, i.e., the sound velocities, 
under a set of very extreme conditions. 

(1) If  there is no reaction or dissipative transport, i.e., if R' = D' = 0, 
then the sound speed c is 

c = Vo (82) 

This is the speed of sound in a two-component system in which all transport 
properties, including chemical reactions, are slow; from Eq. (80a) we see that 
v0 is the "o rd ina ry"  adiabatic sound speed. 

(2) If  the reaction rate is infinitely rapid, i.e., R' --~ o% then 

c = v~ (83) 

This is the speed of  sound in a two-component system where the chemical 
reaction is so rapid that chemical equilibration (2xt~ = 0) is instantaneous. 

(3) If  K' ~ 0% and all relevant frequencies not dependent upon K' are 
small, then 

c = v~. (84) 

This is the speed of sound in the two-component system where thermal 
equilibrium is instantly reestablished, i.e., AT = 0. 

(4) If R' >> kc and k2K ' >> kc, but ~'k 2 << kc, then 

v = v ~  (85) 

This is the speed of sound in a two-component system in which instantaneous 
chemical and thermal equilibration is achieved, i.e., 2x~ = 0 and AT = 0. 

11. SPECTRA: L I N E W I D T H S  

The light scattering spectrum corresponding to the system under study 
consists of two Rayleigh lines and two Brillouin lines which are distorted 
because of dispersive contributions. Explicit expressions for the widths of the 
lines and the frequency shift of the Brillouin lines can readily be obtained, and 
comparison between theory and experiment can be carried out. The intensi- 
ties of the lines are, however, very complicated expressions, dependent upon 
thermodynamic and transport quantities, and these can usefully be compared 
with experiment only in certain extreme limits. In order to obtain some in- 
sight, we will discuss the intensities only under these extreme conditions, but 
it should be remembered that in dealing with actual spectra, a more detailed 
and involved analysis may be necessary. 



186 Paul Madden and Daniel Kivelson 

We will assume that 

ck >> k%1, k2K ', k2D" (86) 

a condition that almost always holds (c is the sound speed). Consequently, we 
retain terms linear in k%7', k2K ', k2~: ", and k2D ', but no higher order terms. We 
also assume that 8o~ 2, 3r 2, 3~r are all small and need only be retained 
through first order, where 

a J  = (Vo ~ - v ~ ) / V o  ~ 

~ = (Vo ~ - v ~ ) / V o  ~ 

~ = (Vo ~ - v ~ ) / V o ~  

(87) 

(88) 
(89) 

The reaction rate R' can take on a wide range of values, but we will limit the 
discussion to values of R' such that 

R'~' << c 2 (90) 

Approximate expressions for the sound speed e and sound absorption 
frequency F~ can readily be obtained under the conditions specified above: 

v'k2 ( R'2 ~ 3~ 2 vo2k2R ' 
Fs = ~ 1 + vo2k2] + T vo2k 2 + R '2 (91) 

v~ R'~' 
c 2 = Vo 2 vo2k 2 + R, 2 + (92) 

The most interesting aspects of these equations are the k dependence and the 
R' dependence. For slow reactions, i.e., for vok >> R', one finds 

rs = ~z-'q'k 2 (93) 

c 2 = Vo 2 (94) 

These yield the well-known Brillouin linewidths I's and frequency shift 
+_ kvo characteristic of unreacting liquids. For fast reactions, i.e., R' 'z ck, 

both the sound speed and sound absorption frequency exhibit a dependence 
upon R'; the dependence of Fs upon R' is particularly pronounced. 

Expressions for the widths of the two Rayleigh lines must be considered 
separately in various limits. For slow reactions, R' << ck, the widths are 

2P• = (R' + k2D')(1 - 3~ 2) + K'k2(1 -- 3r 2) 

_+ ~[(R' + k2D')(1 - 3~o 2) - K'k2(1 -- aT2)] 2 
\ 

( -- 4(R' + k2D')K"k 2 1 ~, v~ 4 ] [  (95) 
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If  the reaction is very slow, R' << K'k z, then 

F~ = R' + k2D ' (96) 

Pr = ~'k2 (97) 

where FR, the width of the "reaction line," is the ( + )  solution in Eq. (95) and 
Pr, the width of the " thermal  conduction" line, is the other solution. These 
are well-known results. r If  the reaction rate is somewhat faster, com- 
parable to the rate of thermal conduction, then R' ~ K'k 2 and we have what 
might be called the "degenerate case." In this case the interaction between 
thermal conduction and the chemical reaction is very strong, and the two 
Rayleigh Lorentzians not only have comparable widths but they also both 
arise from chemical and thermal effects. ~6,17"18~ 

For rapid reactions (R' >> K'k2), I?r once again becomes a pure thermal 
mode, but it differs slightly from the expression in Eq. (97): 

P~ = ~"k 2 (98) 

where K" is defined in Eq. (81). Fn becomes 

Pn = (R' + k2D')[1 - (2R'/vo2)V '] (99) 

In this limit we should neglect the D' term, but we have kept it because Eq. 
(99) then reduces properly to the slow reaction limit, Eq. (96). 

We see that away from the degenerate limit, Pr  is a thermal mode with a 
k 2 dependence, whereas P n is a reaction mode with an R' + k2D ' depen- 
dence. However, the ~ituation is more complicated for the degenerate case. 

These eigenvalues correspond to those obtained by Mountain, ~2~ but for 
fast reactions they differ from those given by Weinberg and Oppenheim. ~3~ 
The latter authors made use of a very strict k expansion and R' expansion 
and so did not retain the (Vo k~ + R '2) denominators. The same is true of the 
related theory of rotational motion presented by Gershon and Oppenheim. ~33~ 

12. SPECTRA: INTENSITIES 

The intensities of the four lines depend upon a host of thermodynamic 
factors as well as upon Aa and a [see Eq. (76)]. We shall make estimates of the 
relative intensities of each line arising from each correlation function, i.e., the 
~}ab~ for each j  in Eq. (76). By the straightforward but lengthy procedure indi- 
cated in Eq. (77), one finds that the intensity factors ~}ab~ are 

~9}~b~ = ~j8 + ~j2[R~b + (Dab + ,~' + n')k 2] 
+ Aj[k2v~b + ( R ~  + D~bk2)(n ' + Kao) + •'n'] 
+ [ ( R a  b + Dabk2)k2v~bR + ,,_2..2 K kr Uab ~ 

+ (R~b + D~bk2)K~b~? '] (100) 
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where (ab) represents (NN), (NAN),  (AN, N), or (AN AN); the yah are 
thermodynamic quantities with dimensions of speeds; the Dab, Ra~, and K~ b are 
transport quantities related to D', R' ,  and K' introduced in Eqs. (65)-(67). 
The v~b, v~b~, V~bR, Dab, Rab, and Ka b are given in Appendix E. 

In the degenerate case, K'k 2 "~ R' ,  and the two Rayleigh lines have com- 
parable intensities. Here we shall exclude this degenerate case and obtain 
expressions for the relative intensities [6~.~b)/Aj], where 

Aj -- ( -Aj  + hj ,)(-hj  + Ay,)(-hj + Aj,,,) (101) 

for all other cases. We shall make the assumption that all the velocities are 
large in the sense that 

vk  >> x ' k  2, x"k  2, ~ 'k  2 (102) 

for all the v's, i.e., for v ~ ,  V~bR, and v~b and for all relevant differences of these 
v's; wherever such combinations of velocities do not obey the inequality 
in (102), they should be neglected but their retention introduces insignificant 
contributions. We still assume that 3~ 2, 3~, 2, and 3%R are small compared to 
unity. Since so many different thermodynamic quantities enter into the 
intensity expressions, it is unlikely that quantitative interpretations of the 
intensities will be forthcoming in the near future. 

In the very slow reaction limit (R '  << k2K ', k%1'), the intensity factor is 

O~ab)/A R 2 2 = fabVab~c/VO (103a) 
- fa~v~b,:)lvo (103b) 

The f~b are dimensionless thermodynamic quantities defined in Appendix E. 
I n the  fast reaction limit 

O(Ra~)/AR (v~b ,. v 2 ~k2t(k2v 2 = - ~ b  ~bRJ /~ o + R  '2) (104a) 

O(~b)/AT ~ V 2 'V 2 (104b) -~ g a b  aOl~[ 0 

where the g~0 are also dimensionless thermodynamic quantities defined in 
Appendix E. If  a = N, then f,b = gab = 1. In the approximation used here, 
the thermal Rayleigh line has intensity factors [O~~ that are independent 
of k and independent of reaction rate R', both for slow and fast rates, al- 
though it clearly does have an R' and k dependence in the degenerate regime. 
The intensity factors [O(~b)/AR] for the reaction line are independent of k and 
R' for slow reactions, but depend upon both k and R' for fast reactions; they 
decrease with increasing R' at large R'; for R' < kvo they increase with 
increasing k but for R' >> kvo, they are independent o fk .  

Next we turn to the intensity of the Brillouin lines. The "n o rm a l "  
Lorentzian contributions are 

Oi ab> Vo2k~[1 - (v~dv#)] + gabR'2[1 -- (v~,,,/Vo~)] ( 1 0 5 )  
Re A, -- 2(vo2k 2 + R '2) 
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For slow reactions 

Re(+(~ab>/A~) = �89 - (v~b/Vo2)] (106) 

Thus for slow reactions the intensity is independent of k and R'; for R' 
comparable to vok,  the intensity has a complicated k and R' dependence; for 
R' much faster than vok,  it is again independent of R' and k. The dispersive 
Lorentzian for the Brillouin lines has intensity factors <~b) Im(Cb~ /A~), where 

+~b) k{R,[g~b(Vo 2 2 _ ( V o  VabR)] + �89 2 v~b)} (107) 
Im A~ = 2vo(R '2 + vo2k 2) 

It is interesting to study the ratio (Im ~ ) ) / ( R e  ~(]b)), which is a measure of 
the "d is tor t ion"  of the Brillouin lines: 

Im +<~b) vok{R'[g~b(Vo 2 - v~bt~) - (Vo 2 - v~b)] + �89 2 - v~)} (108) 
- 2 u Re (P(~) 

For slow reactions, this ratio is linear in k with slope - ~ ' / 2 v o .  For very fast 
reactions the ratio is also linear in k with slope 

- ( v o / R ' ) [ 1  - (Vo 2 - v]b)gAl (Vo 2 --  VobR) -1] 

For reactions such that R' and kvo  are comparable, the ratio is linear in k for 
small k but turns around and decreases with increasing k at large k. 

The four (ab)  contributions r for each j line all have the same func- 
tional k and R' dependences, but because of the differences in thermody- 
namic coefficients, both the observed k and R' dependences and the relative 
contributions to each line from each correlation function may be different. 
The ( N N )  contributions are of particular interest since they are the only con- 
tributions if the two species have identical polarizabilities, i.e., if Aa = 0. In 
this case, for small R', 

�9 <R m+> / ~ p ~  A N  
(109) 

A• = p~ )~ N,r,v  Vo 2 

This is a small quantity since it is proportional to a concentration compres- 
sibility which is presumably small compared to the ordinary adiabatic 
compressibility vo 2. The corresponding (AN, AN) contribution is 

(110) 

The numerator should be larger in this case. Hence the (AN AN) contribution 
to the reaction Rayleigh line should be larger than that of the ( N N )  correla- 
tion function, provided, of course, that A~ and c~ are comparable. The ( N N )  
contribution is the Mountain line. (21) Similar arguments hold for the various 
lines in all limits and for the cross-correlations as well. 
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13. C O M M E N T S  

One should note that if the polarizabilities of the two species are identi- 
cal, A~ = 0, and only the first of  the three terms in Eq. (76) is nonvanishing. 
Even in this case, however, a fourth line, over and above the usual Rayleigh- 
Brillouin triplet, is present, and the half-width of this fourth line is dependent 
upon the rate R of the chemical reaction. This case is quite identical with that 
discussed by Mountain, (2:) except that he neglected the dispersive contribu- 
tions to the Brillouin lines, and that discussed by Weinberg and Oppen- 
heim(:a); the fourth or PR line is often called the Mountain line. In our 
notation the Mountain line arises because of the introduction of the fourth 
variable, the concentration variables AN, but if Aa = 0, it acts as a secondary 
variable, that is, it does not appear directly in the expression for the spectrum 
in Eq. (3). On the other hand, if Ac~ ~ 0, the fourth line enters not only 
through AN as a secondary variable, but also with AN acting directly as a 
primary variable in the expression for the spectrum in Eq. (3). It is important 
to note that in this latter case the intensity of the reaction or concentration 
line with width I'~ is not merely proportional to (Ac02 but also has contribu- 
tions proportional to ~ A~ (cross-correlations) and contributions propor- 
tional to a 2 (Mountain line). Fortunately, these results indicate that rates of 
reaction FR can be determined even if Ac~ = 0. 

If  the degenerate condition, R' ~ K'k 2, holds, the Rayleigh linewidths 
P• depend both upon thermal conduction and reaction rates; we must use 
the complete expression in Eq. (95) for the linewidths of the two Rayleigh 
lines. In this case, the rate of  reactive decay is strongly dependent upon the 
rate of thermal conduction. This means that the rate at which reaction takes 
place depends strongly upon the rate at which heat flows away from or toward 
the reacting volume element. 

Whereas Weinberg and Oppenheim (:3) have chosen the fourth variable 
to be the internal energy, a reasonable choice for the study of vibrational 
relaxation, we have been forced to consider a concentration variable such as 
AN as our fourth variable since it is a much more natural one for discussing 
chemical reactions. In our notation, as given in Eqs. (18)-(20), Weinberg and 
Oppenheim's variable is [eAA} A) + eBA}m]. Thus their currents are also given 
by equations analogous to Eqs. (19)-(21) with the 2 in Eq. (20) replaced by 
(eA - e~), and A~ -A) and A} .B) in Eq. (21) replaced by eAA~ -A) and -eBA (B), re- 
spectively. For the one-component vibrational problem the two theories 
should give very similar results. For a two-component system with Ac~ r 0, 
the concentration variable AN is conserved in the absence of chemical 
reactions and must therefore be treated as a fourth, slowly varying relevant 
quantity; furthermore, it enters directly as a primary variable into the 
expression for I(o~). 
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As we mentioned in the introduction, Mountain, in his hydrodynamic 
theory, introduces a time-dependent viscosity instead of a fourth slow 
variable. Sutherland and Deutch's (lo) treatment is a hydrodynamic equivalent 
of our procedures, but they carry out calculations for nonreacting two- 
component liquids with an internal degree of freedom. Salsburg et al. <~7> have 
carried out calculations starting with equations of irreversible thermody- 
namics and applied them, in less detail, to reactions of greater complexity. 
Kapral et aL (am have followed a similar procedure but have not included the 
conserved variables. 

We note again that small differences do exist between molecular theories 
in which local field fluctuations are neglected and the molecular polarizability 
is assumed constant and thermodynamic theories in which the dielectric 
constant and the internal relaxation mode are functions of both density and 
temperature. (See Refs. 9, 10, 21.) 

A P P E N D I X  A.  E V A L U A T I O N  OF  a (e) 

We wish to obtain the expression in Eq. (23) for energy flux density a (e>, 
defined in Eqs. (22) and (23). We first take the time derivative of E(k, t) 
defined in Eq. (14), 

d e j  ,, 
/~(k, t) = ~ik .q j [~ , ]exp ik .q ,  + ~. - ~  exptK.qj (A.1) 

where 

g, = (p,2/2m) + �89 ~ Ujj, + e, (A.2) 

In this expression the internal energy ej is a function of the internal coordinate 
~:j and momentum rrj of t he j th  molecule, i.e., ej(fj, rrj). The potential energy 
Ujj. is a function of qjj. and of ~:j, i.e., Ujr(qjj,, ~j). Now consider dj:  

~, = {Pm oj -I- ~ [Ktj. V,U,j, + ~,,. V,,Uj,, 

+ + 6,. + $' + (A.3) 

where Vj is the gradient operator corresponding to qj. From Hamilton's 
equations of motion we have 

&j 1 (OUjj, ~Urj ] .  _ &j 
~' = 0~:j 2 ,"~i__ \ ' - ~ J  + - ~ J ] '  ~i - ~ (A.4) 

f,, = - v ,  v , , , ;  r = p / m  (A.5) 
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If we substitute Eqs. (A.4) and (A.5) into (A.3) and note that Ujj, = Uj,j and 

8Ujj,/@j = 9Ujj,/@j, (A.6) 

then we obtain 

~ W (~y - ~j') (A.7) 

Next we substitute Eq. (A.7) into the second term in Eq. (A.1), 

1 I ~ e j e x p i k . q ,  = T ~  [pj,.%,Ujj,- p,.%U~j,]expik.q~ 

+ [pj" VjUjs, - py,. VyUjj,] exp ik-qj ,)  

4 ~ (~J - ~j') exp ik.qj 

[~Vjj, ~j)] exp + [--ff~-j (~s' - ik.qj,} (A.8) 

We note that 

VsUss, = - Vs, Uss, (A.9) 

Since Ujj, is short range, for small k we can expand exp ik.qjj,, and Eq. (A.8) 
becomes 

~ o~j exp ik'qj = l j~r (ik'eb,j)(exp ik'qj) 

• (pj + pf).v;u;;,  + - -~ .  (~, - ~;) (1.1o) 

Equation (A.10) combined with Eqs. (A.1) and (A.2) yields Eq. (23). 

A P P E N D I X  B. E V A L U A T I O N  OF ZERO T I M E  C O R R E L A T I O N  
F U N C T I O N S  

We present a derivation of the expressions used to express zero time 
correlation functions as thermodynamic derivatives, i.e., we derive Eqs. 
(34)-(37). 

At equilibrium, in the absence of any external perturbations, the distri- 
bution function po for a system in a grand canonical ensemble is 

Po = e x p - - f l ( V e -  VlzAn A -- VpnnB) (B.1) 

where e is the energy density for the system, Vits volume,/3 = (kBT) -z, Tthe 
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equilibrium temperature, /zy the chemical potential, and ny the number 
density of the ~,th species. The quantities T and/zy are statistical quantities 
independent of the phase point variables Ps and qj, the momentum and 
position of the j th  particle. In the absence of external perturbations the system 
is uniform, and Tand  tz~ are constants. The quantities n~ and e are functions 
of the phase point variables; since the system is uniform, both ny and e are 
independent of the space point R, i.e., of position within the sample. 

If we apply a set of small external perturbations to the system and allow 
the system to attain local equilibrium at each point R, then the new distribu- 
tion function has the form 

p = exp{-t3 f dR [e(R) - ~ p j  3(R - qj).U(R) 

+ I ~ mj 3(R _ qj)U(R)2 tzA(R)nA(R) _ tzB(R)nB(R)I)[T/T(R) ] (B.2) 

where dR is a three-dimensional volume element, ~j p / 3 ( R -  qj) is the 
momentum density, and ~j mj 8(R - qj) is the mass density at point R; 

U(R) is the average flow velocity of a small volume element at point R, a 
volume element small compared to V but large compared to molecular 
dimensions. We assume that all the quantities in Eq. (B.2) are at local equi- 
librium and well defined in each small volume element specified by the 
position R. In order to obtain Eq. (B.2), we note that the total internal 
energy density eint(R) of a volume element at point R moving with velocity 
U(R) is 

eint(R) = �89 ~ mj[(p/mj) - U(R)] 2 3(R - ~b) + "'" (B.3) 
J 

where the potential and intramolecular energies have not been explicitly 
indicated. If  the right-hand side of Eq. (B.3) is expanded, one obtains 

e~nt(R) = �89 ~ m/3(R - qj)U(R) 2 - ~ pj 3(R - qj).U(R) 
J J 

] 
- q;) + "1 

(B.4) 

We note that the quantity in brackets is the total energy density e(R), whose 
Fourier transform is given in Eq. (14). The distribution function p depends 
upon eint(R); thus we replace e in Eq. (B.1) by ei~t(R) and we are then led to 
Eq. (B.2). 

The quantities TIT(R), U(R), and tz~(R) in Eq. (B.2) are all statistical 
averages independent of the phase points (qj, p j}; they are dependent upon the 
space point R because the system, though at local equilibrium, is no longer 
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homogeneous. It is these quantities, which do not depend upon the internal 
variables of the system, that we associate with "external forces or perturba- 
t ions" which are responsible for the distortion of the distribution function 
from that in Eq. (B.1) to that in Eq. (B.2) We will make a linear approxima- 
tion; we assume that the external forces are small, i.e., that only terms linear 

in [TIT(R) - 1], U(R), and [I~,(R) - /~ , ]  need be retained. Therefore, we can 
neglect the U(R) 2 terms in Eq. (B.2). In the context of this linear approxima- 
tion, we can expand the distribution function p about po, retaining linear 
terms only: 

O = P o  1 +/3 dR e ( R ) - - - f - - + ~ ' p j . ~ ( R - q j ) ' U ( R )  
J 

where 3Q represents the small changes in a quantity Q in going between the 
two ensembles discussed above. 

Now we discuss the average value o~(k) of a set of quantities ,~(k) in the 
ensemble represented by the distribution function or density matrix p in 
Eq. (B.5): 

,~(k) = Tr p(,.~k) (B.6) 

From Eqs. (30), (31), and (11) we see that, provided we exclude k ~ 0, we can 
replace d ( k )  in Eq. (B.6) by the fluctuations A(k) of these quantities: 

A(k) = Tr pA(k) (B.7) 

We next substitute Eq. (B.5) into Eq. (B.7), taking account of Eqs. (30) and 
(32): 

/3 [ ~r(k) 
V(2rr) 3 [(A(k)E*(k)) ----T-- + (A(k)ik.MV*(k)) U(k) .~(k) 

- ik 

+ ( A ( k ) N A * ( k ) ) T ~ ( ~ )  + ( A ( k ) N B * ( k ) ) T 3 ( ~ ) I  (B.8) 

where - ik. MU(k) is defined in Eq. (13), U(k) is both the average of U(k) and 

the Fourier transform of U(R), (Q)  indicates Tr poQ, an average over phase 
points. Note that 3(t~A(k)/T(k)) is a short-hand notation for 

$(l~A(k)/T(k)) = I~A(k)T -1 - i~aTo 2T(k) (B.9) 

where/xA and T are equilibrium quantities in the undisturbed system,/~A(R) 
and T(R) are corresponding quantities in the perturbed system, and /xA(k) 
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and T(k) are Fourier transforms of the fluctuations 8/*A(R) and ST(R). In 
obtaining Eq. (B.8), note that 

f (A(k)A*(R)>. 8B(R) dR 

f f exp ( - ik ' .R )  dl~' 8B(R) dR (B.10) = (A(k)A*(k ' ) )  (2~r)a .... 

If  we substitute Eq. (32) into (B. 10), the right-hand side of Eq. (B. 10) becomes 
(A(k)A*(k))B(k)/(2r~)aV. Equation (B.8) is equivalent to Eq. (34) with 
A(k) given by Eq. (35) and B(k) by Eq. (37). 

Since the various time-independent correlation functions that enter into 
the transport theory can be related to derivatives with respect to the "external 
perturbations" B, it is important to understand precisely what these quanti- 
ties are. We note that the quantity T(k) is defined aa 

T(k) = f exp(ik.R) aT(R) dR (B.I 1) 

In obtaining this quantity, we have assumed local equilibrium such that the 
temperature T(R), and hence the fluctuation ST(R), are uniform over a small 
volume element vk; this volume element can then be defined by the relation 

T(k) = vk ST(R) (2rr) a (B.12) 

In the limit of small k, vk approaches the volume V of the system and 

lim T(k) ---> V aT (2,~) 3 (B.13) 
/ c o o  

In this limit ST(R) is uniform over the entire system. Note that T(k) has the 
dimensions of a temperature times a volume. Similarly, at local equilibrium, 
8/*A(R) is uniform over the volume v~ and 

lim/*A(k) --> V 8/*A (2rr) a (B. 14) 
k ~ 0  

At a given value of k, we have local equilibrium in a fixed volume element 
uk. It therefore follows that all thermodynamic derivatives in t~e theory are 
taken at constant volume. 

A P P E N D I X  C. EQUIVALENCE OF H Y D R O D Y N A M I C  
E Q U A T I O N S  

We wish to prove that the transport matrix in Eq. (69) gives rise to the 
usual transport equations obtained by irreversible thermodynamics. First we 

note that the Mori theory (29) yields transport equations for A(o 0, the instan- 
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taneous average of the half-frequency transform of A(t), which are analogous 
to Eq. (25): 

A(k, ,-) = - [K(k, oJ) - i f2(k)JA(k, oJ) (C. 1) 

In the low-frequency and low-k regime K(o,) = K(0). Equation (69) gives the 
transport matrix associated with the variables A = {N, AN, E, - i k M . U } .  
These are not the variables usually used in irreversible thermodynamics, so 
we must transform to customary variables such as N, c, T, p, where p is the 
pressure and c is the mole fraction. 

From Eqs. (C. 1) and (69) we can obtain the relation 

-ikM~)(k) = Vk2[ (~N)~N,E.vN(k) + (~-~N)N,E,vAN(k) 

The term in brackets is the transform of  the pressure fluctuation per unit 
volume [~p(z)/V] at constant volume; if this substitution is made, Eq. (C.2) 
becomes 

~ g _  ~ p + , ~ , 0  2 
~t ez Ffiz ~ g (C.3) 

where ~ is the momentum density. This is the Navier-Stokes equation. (9~ (All 
thermodynamic derivatives are at constant U.) Similarly, from Eqs. (69) and 
(C.1) we obtain 

N(k) = +ikMU(k)/m (C.4) 

the equation of continuity. In position space this equation becomes 

O~/~t = - V.g (C.5) 

where ~ is the number density. 
We next combine the third line of Eq. (69) with Eqs. (67), (44), and 

(C.4): 

~.(k) = --k2VK ~N,~,vN(k) + 

( ) ] OT E(k) + ~ \~l/~/r,A.lr,v + ~ N,AN,V 

The term in brackets is the transform of the temperature fluctuation per unit 

volume at constant volume. In the expressions above, E(k) is the Fourier 
transform of the total energy density and E is the total energy. In the thermo- 
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dynamic derivatives, U = 0, and in these quantities E is therefore the internal 
energy. From Eq. (D.3) we note that the last term on the right-hand side of 

Eq. (C.6) is equal to ikHU(k), the enthalpy flow into a fixed volume element 
(fixed k). 

Next we transform to position space: 

Ot - M V  Oz + ~c ~z---- ~ (C.7) 

where ~ is the energy density. This is one of the hydrodynamic equations, 
[see Eq. (86') of Ref. 9: Note that the corresponding equation in Ref. 10 
makes use of T rather than ~]. 

We consider the second line of Eq. (69) as well as Eqs. (65), (44), and 
(D.4); by procedures similar to those above, we obtain 

A~(k) = - ( D k  2 + R)(N/2k,) 3(At~(k)/T(k)) + ik ANU(k) (C.8) 

where 3(Atz(k)/T(k)) is defined in Eq. (B.9). But instead of AN(k) we wish to 
use c(k), the Fourier transform of the fluctuation of the mole fraction of 
component A, 

c(k) = J dR 8(nA(R)n(R)-1) exp(ik.R) (C.9) 

For small fluctuations, only the fluctuations are affected by the transforma- 
tion, i.e., 8n(R) goes to N(k) but n(R) is a constant N/V. Thus 

AN(k) = (2N/V)c(k) + (AN/N)N(k) (C.10) 

and we can expand 3(Al~(k)/T(k)) as 

~(Alz(k)/T(k)) 

= \ 8T ],.~,v + + 

Next we substitute Eqs. (C.11), (C.10), and (C.4) into Eq. (C.8)- 

N [ [8c \  T'k" --ff'2N d(k)= -(Dck 2 + R~)~-~B ~(k) + (~T)p,v,A~,,T-- ( )  

+ (~p)r,v,a,, p(k)] (C.12) 

where 

Re_ Do (c.,3) 
R D \ ~ / p . ~ . v  
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A P P E N D I X  D. T H E R M O D Y N A M I C  E Q U I V A L E N T S  OF S O U N D  
SPEED 

The variables N, AN, and E are suitable variables for the microscopic- 
linear response approach to the present problem, but these quantities are not 
the most suitable variables for macroscopic treatments. Thus the thermo- 
dynamic derivatives in Eq. (69) are not familiar ones, and the eigenvalues of 
Eq. (69), if expressed in terms of these derivatives, are not very revealing. For 
example, Vo 2, where Vo is the slow reaction sound speed given in Eq. (80a), 
enters as a coefficient in Eq. (79b) and has the following form if obtained 
directly from Eq. (69): 

v #  = ~ - ~  ~,N,~,v 

V ep ~p 

Equation (D. 1) can, with a bit of thermodynamic manipulation, be reduced to 
Eq. (80a). To do this, we proceed as follows. The molecular chemical poten- 
tials ~ and A~ defined in Eqs. (38) and (39) are related to the Gibbs free 
energy G by the relation 

G = �89 + �89 A/~ AN (D.2) 

where N and AN are defined in Eqs. (36) and (8): The corresponding Gibbs- 
Duhem equation yields 

and 

(ff__~)u/T AU/T H - T-V ( 9 . 3 )  

where H is the enthalpy. 
Next we note that in our notation the first and second laws of thermo- 

dynamics are 

dE = T dS  - p d V  + �89 d N  + �89 Aiz d A N  (D.5) 

From this we obtain 

ep 

(Note that holding N and V constant is equivalent to holding N and P 
constant; also note that all thermodynamic derivatives are taken at constant 
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U, mean flow speed.) It can readily be seen with the aid of Eq. (D.6) that 

We next reexpress the first term in Eq. (D.1): 

vl@ ~ ap 
~,~,~.~.v = ( ~ ) ~  + 

(D.7) 

( @ ~ [SN] 

8S) 1 ~N 
~ , ~ , ~  = ~ - ~  

= -  r (  a s  
2 \ 0--A--N ] ,,o.N 

ON) _ N 
(D.IO) ~ - ~ -  

(D.11) 

We substitute Eqs. (D.2)-(D.4) and (D.7)-(D. 11) into Eq. (D. 1): 

@ 
@ 1 (F-~)lV,AN, ~ 

OS OS 

The quantity in brackets vanishes and so Eq. (D. 12) reduces to Eq. (80a). 
Similarly, vr obtained directly from Eq. (69), is 

__v(@~ [ r2 ?./r~ 
vr2 = v~ + m \eEIN,~N,V[---~ \-'F--f-/N.AN.V 

@ 
(D.13) 

We now prove that this expression reduces to that in Eq. (80c). To do this, we 
rewrite the thermodynamic laws in Eq. (D.5) in terms of the Helmholtz free 
energy A : 

dA = - S d T  - p dV + �89 + �89 AlxdAN (D.14) 

(D.9a) 

(D.9b) 

We also see that 

If  we go back to Eq. (D.5) and replace N by pV/m, where p and V are both 
variables, then we can readily show that 
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It follows that 

~S +15,  
2 

I[0A,~'] ( O S )  (D.16) 
2 \ -~/~.~N,v = ~ N,v.~ 

If N and V are constant, the density p is constant. Next, we see that 

0S p [8S]  (D.17) 
(~)~.~.~ = (~)~.~.~ + ~,~1~.~.~ 

We substitute Eqs. (D.15)-(D.17), (D.3), (D.4), (D.6), and (80a) into Eq. 
(D.13), remembering that if N and V are held constant, we can equally well 
hold N and p constant: 

OS OS - OS 

This is equal to 

Op ( Op'~ (OS~ (D.19) 

which in turn is equivalent to Eq. (80c). 
We also consider v~o z in Eq. (80b); if obtained directly from Eq. (69), this 

gives 

v ~  = m =_~_~N,",v \OzXNIN,~,v~.O(AtqT)IN,~,v 

rv(op] {ap] 
+ ~ \OTI,~T,~,~T,v\aEIN.AN,v 

\g-X-ff l.,E,,,\O--y~/rl,,,~,~\~l.~,~.~,~ ] (D.20) 

The derivative [c~(~./T)/O(AMT)]sEv can be evaluated by rewriting it as 

(o~/r ] l ~ / r ]  ( OAN 
o--A~/T J sEv = \-O--A-N I s~v\ O--A~/TI N~v (D.21) 

making use of the identity in Eq. (44a), and then contracting the right-hand 
side of Eq. (D.20), 

Oy./T ] [OAN] (D.22) 
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Similarly, 

~T 

and by making use of Eq. (44c), we obtain 

8T " 1 2[SAN~ 

(D.23) 

(D.24) 

If we substitute Eqs. (D.22), (D.24), and (D.3) into Eq. (D.20), we obtain 

The first bracket equals (@/ON)~asr.E,v 
(@/OE)u,o,A~I~. Next consider 

(D.25) 

and the second bracket equals 

@ 

(D.26) 

[This expression is obtained by first obtaining (@/Op)U/r,E,N and then ex- 
panding this quantity to obtain (@/OP)A.Ir.S,N.] The relations 

are also useful. We now substitute Eqs. (D.26)-(D.28) into Eq. (D.25): 

(D.29) 

If we set V = Nm/o in Eq. (D.5) and let N and p be variables, we obtain the 
result 

Since AtilT, p, and p are all intensive, 

OE 
N(~-~)uIT,p.D = E (D.31) 
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If  we substitute Eqs. (D.30) and (D.31) into Eq. (D.29) and use the fact that 
at equilibrium A/~ = 0, we obtain Eq. (80c). 

v~r can be treated in similar fashion. 
Finally, if obtained directly from Eq. (69), K=~ in Eq. (81) is 

= K'[1 (OAN] [ OE ~ ] 
[ (D.32) 

where we have used Eq. (D.23) and a similar relation for [8(Afz/T)/OT]N,6N.v. 
By reverting to the definition of ~c' in Eq. (67), we get Eq. (81). 

A P P E N D I X  E. F A C T O R S  A P P E A R I N G  IN E X P R E S S I O N S  FOR 
I N T E N S I T I E S  

By using techniques similar to those used in Appendix D, we have found 
expressions for the terms in Eq. (100): 

A~ is the ith variable [Eq. (35)] and B~ the conjugate thermodynamic potential 
[Eq. (37)]. The subscripts a, b, and e are over N and AN and c # a. We have 

ga~ = Kab/K" (E.3) 

where K" is defined in Eq. (81): 

gNN = gaN~ = g~c~N = 1 (E.4) 

and 

aT -x gaNAN = (~-~)ma[ 1 -  (O(~/Z)] { OT '~ ] 
el" 

Furthermore, 

(E.5) 

Ra, + D,,bk 2 (E.6) 
f a b -  R' + D'k 2 

fNN = fNaN = faNN = 1 (E.7) 
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and 

RANAN DANAN 
R '  D'  

The expressions for V~bR are 

t aO</T) ]AN,~',Vta(At*IT)/N,E,V 

+ \ aT ]~,<...,.\a(AdT))N,~,,. 
(E.8) 

- 7  ~ ,< ,~ . , .  ~ ,<.~,~.~ 

l 1 -  [ O("lr) ~ [ ~r ~ ] - '  • (E.11) 
t 

= r _ v f l a .  (ap  ] 
v A , ~ , ,  p [\OE]A.,.,v\aT]A.,,'mvJ 

[a(t,IT)~ ( aT ~ ]-1 (E.12) 
• i - t - - V T j ~ . . ~ . , , t a ( ~ j . , ~ . ~  ] 
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